segunda-feira, 23 de novembro de 2009

Estudo: degelo começa ser observado na Antártida Oriental


O aquecimento global e suas consequências parecem avançar mais rápido do que as previsões dos especialistas. Um estudo publicado pela revista científica Nature revela que o degelo dá sinais na imensa Antártida Oriental, onde está localizado o Polo Sul geográfico da Terra.

O continente antártico é dividido em Ocidental e Oriental por uma extensa cadeia de montanhas denominada “Montanhas Transantárticas”. A parte Oriental é a maior e corresponde a 70% do continente. É coberta por um extenso e espesso manto de gelo na qual se encontra a maioria das geleiras do planeta.

Em 1911, o norueguês Roald Amundsen e mais quatro companheiros foram os primeiros homens a pôr os pés no Polo Sul, no coração da Antártida Oriental.

A parte Oriental do continente sempre pareceu mais resistente que a Ocidental, mas pesquisadores da Universidade do Texas (EUA) constataram alterações significativas na região. Os estudiosos observaram que a camada de gelo da plataforma da Antártida Oriental começou a perder espessura há três anos.

O satélite Grace monitora todas as alterações na massa da placa de gelo do continente. Dados coletados evidenciam que o ritmo de perda de massa de gelo na zona ocidental foi de 132 km³ ao ano, entre 2002 e 2009. De acordo com os especialistas, nenhuma grande surpresa.

Já o manto de gelo das zonas litorâneas da Antártida Oriental vem perdendo 57 km³ por ano desde 2006, dando um salto se comparada à estabilidade que antes era observada nesta parte do continente.

Entretanto, os cientistas contam com uma grande margem de erro e por isso as pesquisas futuras vão precisar ser rigorosas nos detalhes. A investigação sobre as alterações do clima na região interessa a todo planeta.

Arte: Mapa da Antártida mostra diversos pontos geográficos localizados nas regiões Ocidental e Oriental do continente. Crédito: Apolo11.com

domingo, 22 de novembro de 2009

Prótons em circulação: LHC é ligado na Europa

Após 14 meses desativado, o Grande Colisor de Hádrons, ou LHC, voltou a operar no final da tarde de sexta-feira e segundo os pesquisadores do Centro Europeu de Investigação Nuclear (CERN), as primeiras análises não apontam qualquer problema com o gigantesco acelerador.


A primeira circulação do feixe de prótons ocorreu no interior do túnel a um potencial baixo de energia da ordem de 450 giga elétrons-volt (GeV), mas será lentamente ampliado até atingir 7 tera elétrons-volt (TeV), quando ocorrerão as primeiras colisões que deverão romper as partículas injetadas, objetivo principal da máquina.

Os cientistas injetaram o primeiro feixe de prótons às 16 horas pelo horário de Brasília e três horas depois de disparado já havia completado 500 voltas ao redor do túnel, mas à medida que a voltagem era ampliada, maior era velocidade de circulação. Neste momento os pesquisadores confirmavam a detecção das partículas nos quatro detectores do LHC.

Enquanto o feixe era acelerado, uma equipe de avaliação se reunia para decidir sobre a injeção do segundo feixe, que deveria ser disparado do lado oposto do túnel. Alguns minutos depois a órbita do feixe 1 já havia completado 100 mil voltas e instantes depois era confirmado que as partículas já haviam circulado o túnel por 10 milhões de vezes.
 

Os magnetos de aceleração do feixe 2 foram acionados 4 horas após o disparo do feixe 1 e cinquenta minutos depois já haviam orbitado o túnel de 27 km por 11 mil vezes. Neste momento os cientistas confirmaram que os detectores estavam registrando a passagem do feixe. Algumas horas depois as partículas já haviam completado 15 milhões de órbitas.

Durante o experimento nenhuma colisão foi registrada, mas estima-se que em janeiro de 2010 os primeiros choques já sejam possíveis, quando as partículas estarão circulando próximas à velocidade da luz.

Fotos: No topo, cientistas do LHC comemoram o momento da confirmação de que o feixe de partículas havia completado a primeira órbita dentro do túnel. Acima, painel mostra os primeiros instantes do experimento, quando o feixe era acelerado a apenas 4.5 giga elétrons-volt, dado mostrado no canto superior esquerdo da tela. Crédito: CERN.

Fonte: Inovação Tecnológica

quinta-feira, 19 de novembro de 2009

Tudo pronto para a religação do Grande Colisor de Hádrons

Apesar de ter sido oficialmente inaugurado no ano passado, o Grande Colisor de Hádrons, o LHC, nunca foi testado na prática. Depois de uma pane que destruiu 56 ímãs supercondutores, o gigantesco acelerador de partículas passou por uma série de reparos e segundo a Organização Europeia de Pesquisa Nuclear, CERN, a máquina de 27 quilômetros está pronta para entrar em operação.


Segundo porta-voz da organização, cientista James Gillies, não existe uma data exata para a religação do acelerador, mas não descartou a possibilidade da máquina ser religada neste final de semana.

O LHC entrou oficialmente em operação no dia 10 de setembro de 2008, mas um incidente nos magnetos 3-4 provocou um grande vazamento de hélio no interior do túnel circular, o que obrigou os pesquisadores a desligarem o equipamento. Investigações posteriores apontaram que o problema ocorreu em decorrência de pane elétrica relacionada ao controle de dois magnetos supercondutores.

No total o LHC possui 1232 magnetos supercondutores similares aos que apresentaram a pane. Cada um deles pesa 35 toneladas e têm a função básica de curvar e dirigir os feixes de partículas que serão disparadas dentro do túnel, forçando um violento choque entre elas.

O LHC é o maior acelerador de partículas do mundo. Sua forma é circular com 27 km de comprimento e se localiza a 100 metros abaixo da superfície, abaixo da fronteira entra a França e a Suíça.

Aceleração e Impacto

Ao contrário de outros aceleradores de partículas que fazem colidir prótons contra outras partículas, o objetivo do LHC será colidir dois feixes distintos de prótons que serão acelerados até atingirem 7 Tev (tera-eletrons-volt) de energia cada um deles. Quando isso ocorrer, trilhões de prótons estarão se deslocando a 99.99% da velocidade da luz e se chocarão entre si.


A colisão ocorrerá em quatro pontos do túnel circular, onde quatro grandes detectores de partículas registrarão os impactos. Um desses detectores, chamado ATLAS, é do tamanho da metade da catedral de Notre Dame, em Paris.

Objetivo

Como se sabe, todas as moléculas são feitas de átomos, constituídos de prótons, nêutrons e elétrons. Os prótons, por sua vez, são formados por outras partículas estranhas, chamadas quarks e glúons. Até onde se sabe, os elétrons são partículas fundamentais e não podem ser divididas, mas seriam os quarks formados por partículas ainda menores?

Para tentar responder a essa e outras questões, os cientistas do CERN farão uma grande colisão entre prótons na tentativa de rompê-los e detectar novas partículas ainda não conhecidas, mas apenas teorizadas. Uma dessas partículas é conhecida como bóson de Higgs, em homenagem ao cientista Peter Higgs que há mais de 40 anos especulou sobre a possibilidade de sua existência.

Muito Instável

De acordo com os físicos de partículas, existe um campo de Higgs que permeia todo o espaço e a partícula de Higgs seria a portadora desse campo, que interagiria com outras partículas. Segundo o modelo atual, o bóson de Higgs tem cerca de 200 vezes a massa do próton, mas é tão instável que após a colisão seu tempo de existência seria menor que um milionésimo de bilionésimo de bilionésimo de segundo, o que torna sua detecção extremamente difícil.

Para que a observação da partícula de Higgs seja possível o CERN utilizará uma gigantesca rede de supercomputadores, capazes de analisar as montanhas de dados que serão geradas pelos detectores após a colisão, o que poderá levar anos. Se encontrada, os cientistas estarão muito próximos de compreender quais as forças primordiais que definiram as regras do Universo e como isso implicou em tudo que se seguiu.

Por sua importância dentro modelo teórico, alguns se referem ao bóson de Higgs como a "Partícula de Deus", mas os cientistas não veem com bons olhos essa denominação.

Fotos: No topo, parte do detector CMS&Atlas responsável na detecção das partículas primordiais do início do Universo. Acima, simulação mostra um dos gráficos aguardados ansiosamente pela comunidade científica: o bóson de Higgs, também chamado "Partícula de Deus". Créditos: CERN.
Fonte: Inovação Tecnológica

terça-feira, 17 de novembro de 2009

Biomedicina no Shopping Crystal (20/11)

No próximo dia 20 (sexta-feira), acadêmicos do curso de Biomedicina da Universidade Tuiuti do Paraná, supervisionados pela coordenadora Camila Ribeiro e pelas professoras Claudia Ota e Renata Sindeaux, realizarão vários atendimentos no Shopping Crystal, em comemoração ao Dia do Biomédico.

“Neste evento mostraremos as áreas de atuação do Biomédico. Faremos orientações sobre DST e AIDS, com distribuição de preservativos; orientações sobre prevenção e diagnóstico de câncer de mama; exames de glicemia; orientação com demonstração visual sobre prevenção e riscos de parasitoses”, conta Camila.

Serviço
Dia do Biomédico
Data: 20/11 (sexta-feira)
Horário: das 10h às 22h
Local: Shopping Cristal – Rua Comendador Araújo, 731 – Centro
Fonte: Imprensa UTP

segunda-feira, 16 de novembro de 2009

Cientistas descobrem em idosos alta concentração da enzima da vida longa


A enzima da vida longa já havia sido estudada por Elizabeth Blackburn e Carol Greider, que ganharam o Nobel de Medicina em 2009. - Foto por Michael Probst/14.03.2009/AP

Eles acreditam ser possível a criação de remédios que prolongam a vida além dos cem anos

Pesquisadores da Faculdade Albert Einstein de Medicina, ligada à Universidade Yeshiva, nos Estados Unidos, descobriram que um grupo de idosos com idade média de 97 anos têm níveis maior da enzima telomerase em sua estrutura genética.

A enzima está presente em milhares de células durante toda a vida, mas não se sabia até agora sobre a concentração maior em idosos.

Ela faz parte dos cromossomos, que são sequências de DNA, um composto orgânico presente em todas as células dos seres vivos. O DNA é primordial para que os seres vivos cresçam, sobrevivam e se reproduzam.

Nessas grandes sequências de DNA, há longas fitas chamadas telômeros que se encurtam toda vez que a célula se divide. Se os telômeros ficam curtos demais, a célula não consegue mais viver.

A telomerase evita que os telômeros se encurtem, ou seja, é uma espécie de "fonte da juventude" para células, inclusive as que tendem a desenvolver o câncer.

Essa enzima foi descoberta em 1984 por Elizabeth Blackburn e Carol Greider foi descobrir em 1984. Em setembro, as duas pesquisadoras ganharam prêmio Nobel de Medicina de 2009.

Os estudiosos americanos querem agora analisar a quantidade exata da enzima no grupo de 86 pessoas estudadas para, a partir dessas informações, iniciarem a produção de remédios que tenham o poder de prolongar a vida além dos cem anos de idade.

Fonte: R7.com

Anvisa publica regulamento para água sanitária e alvejantes

A Agência Nacional de Vigilância Sanitária (Anvisa) publicou, na sexta-feira (13), um regulamento técnico (RDC 55/2009) para produtos saneantes a base de água sanitária e alvejantes a base de hipoclorito de sódio ou cálcio. O documento estabelece requisitos mínimos para o registro desses produtos.

Substâncias permitidas, formas de apresentação, advertências e cuidados que deverão ser mencionados na rotulagem para minimizar o risco à saúde dos usuários são alguns dos itens abordados na resolução. Todos os laudos exigidos pela Agência para o registro deverão ser emitidos por laboratórios oficiais.

A água sanitária, por exemplo, deve apresentar um teor mínimo de cloro ativo de 2,0% p/p e máximo de 2,5% p/p. No modo de uso, deve constar que para desinfecção de superfícies e objetos o tempo de contato com o produto é de no mínimo dez minutos. Se o produto tiver indicação para combate às larvas do mosquito da dengue, o rótulo deve dizer ainda que é necessário a adição de 2ml do produto para cada litro de água.

Os alvejantes e águas sanitárias não podem ter apresentações na forma de aerossol, líquidos premidos ou pulverizados. Com relação à embalagem, o regulamento estabelece que ela deve ser opaca, de plástico rígido e de difícil ruptura, de modo que não permita interações do produto com o meio externo. A embalagem também deve ser bem vedada, com fechamento que impeça vazamentos.

A adição de corantes, fragrâncias ou quaisquer outras substâncias só é permitida para os alvejantes. Em todos os produtos, os dizeres de rotulagem devem ser legíveis, com limite mínimo de 1 mm de altura, e a cor e o tipo das letras usadas não podem se confundir com o fundo.

A partir de agora, o registro de novos produtos já deve atender ao regulamento. Os produtos já registrados ou notificados na Agência terão prazo de 180 dias para se adequarem à nova legislação.

Fonte: Ascom da Anvisa
Fonte: Notícias MS

Degelo acelerado surpreende na Groenlândia e na Antártida


Uma recente pesquisa publicada pela revista Science demonstra que a calota polar da Groenlândia está derretendo em ritmo acelerado há pelo menos dois anos. O mais assustador é que o degelo vem sendo confirmado através de imagens de satélites, independente de qualquer modelo ou previsão climática.
No período entre 2006 e 2008, o derretimento do gelo alcançou 273 km³ por ano resultando num aumento de 0,75 mm no nível dos oceanos.

"Está claro, que observações confirmam a aceleração da perda da massa de gelo da Groenlândia desde o final dos anos 90 e as causas deste fenômeno permitem pensar que provavelmente continuará em um futuro próximo", afirma um dos autores o estudo, o glaciologista Jonathan Bamber, da Universidade de Bristol.

As projeções futuras são preocupantes. O derretimento total do gelo da Groenlândia elevaria em 7 metros o nível atual de nossos oceanos, dizem os especialistas. Desde 2000, a calota polar da Groenlândia perdeu 1.500 km³, o que gerou um aumento de 5 mm no nível dos oceanos em quase uma década.

De acordo com os cientistas, a situação ainda é compensada pois uma parte do gelo derretido na superfície das geleiras volta a congelar sob a neve a cada inverno. Sem esse processo natural, o volume de água perdido na calota teria sido o dobro observado desde 96.

Iceberg Antártida

Na última quinta-feira (12), um iceberg de 500 metros de comprimento foi descoberto a 8 quilômetros da ilha Macquarie, situada entre a Austrália e a Antártida. Segundo os pesquisadores, a massa de gelo tem cerca de 50 metros de altura e provavelmente faz parte de outro iceberg maior que se desprendeu da costa antártica.

A divisão australiana da Antártica informou que outros icebergs já foram levados em direção ao norte pelas correntes marítimas, mas nunca tinham chegado tão próximo à ilha, onde as águas são mais quentes.

Foto: no topo, iceberg de 500 metros é avistado entre a Austrália e a Antártida: Crédito: Murray Potter.
Fonte: apolo11.com

domingo, 15 de novembro de 2009

A melhor invenção da história


A máquina de raios-X foi eleita a melhor invenção de todos os tempos em uma votação realizada pelo Museu de Ciências de Londres.

O equipamento, criado em 1895, recebeu 10 mil do total de quase 50 mil votos computados pelo museu, que pediu para os eleitores refletirem sobre o impacto da invenção no passado, no presente e no futuro. Ele possibilitou pela primeira vez a visualização do interior do corpo humano sem que fosse preciso abri-lo.

A medicina foi um dos campos que recebeu mais votos, colocando duas outras invenções no topo da lista: a penicilina (em segundo lugar) e a descoberta da estrutura do DNA (em terceiro). Entre as dez invenções mais votadas estão ainda a nave Apollo 10, a máquina a vapor e o telégrafo.

Andy Adam, presidente do Royal College of Radiologists, se disse muito feliz com o resultado, pois, segundo ele, a máquina de raios-X revolucionou a medicina.

"A tecnologia na radiologia hoje avançou tanto que estamos chegando à era do 'paciente transparente'", afirmou. Para Ben Bradshaw, secretário de Cultura, Mídia e Esportes, a escolha do público mostrou "nossa curiosidade insaciável por saber como as coisas funcionam".

A eleição foi realizada pelo Museu de Ciências de Londres para marcar o seu centenário. Exemplares dos objetos mais votados estão expostos no local.

Fonte: BBC Brasil

segunda-feira, 9 de novembro de 2009

Alunos orientam a população no SESC da Esquina


Entre os dias 11 e 13 de novembro, os alunos de Biomedicina darão orientações sobre Diabetes. Para a coordenadora do curso, Camila Ribeiro, a doença representa um dos principais males do século 21 e acomete pessoas cada vez mais jovens. “Na maioria dos casos, há a possibilidade de se evitar o sedentarismo e a má alimentação, que são alguns dos principais fatores que contribuem para o Diabetes Mellitus tipo II”, explica Camila.

De 17 a 19 de novembro, as alunas Karina Grecco, Eliane Terezinha Vosniack, Ana Cláudia Strassi de Oliveira e Gisele Barbosa de Paula, também de Biomedicina, farão uma atividade de orientação para a população sobre a Tuberculose. “Elas vão interagir com a população, mostrando os riscos da doença, contágio, tratamento e a gravidade da infecção pela bactéria e AIDS”, explica a coordenadora do curso, Camila Ribeiro.

Entre 25 e 27 de novembro, as alunas de Biomedicina, Gislaine Caroline Tuchesky, Léia de Mello Silva, Patrícia dos Santos, Aline Médici Zago, Gabriela Fernandes Bernardes e Rosângela da Silva farão um trabalho a respeito do Câncer de Mama, Útero e Próstata. “Nesta atividade, as alunas mostrarão às pessoas os fatores de risco, prevenção, auto-exames, exames de laboratório complementares e tratamentos possíveis, relacionando o papel do médico e do biomédico no diagnóstico, combate e prevenção do câncer”, encerra a professora.

DST – Em setembro, as alunas do 4º período noturno de Biomedicina da Tuiuti Eliane Terezinha Vosniack e Celiza Pliskieviski da Cruz, orientaram e alertaram a população sobre os riscos das Doenças Sexualmente Transmissíveis, no SESC da Esquina. “O SESC forneceu o espaço e os materiais para que nós pudéssemos informar as pessoas sobre as formas de prevenção das DST, assunto que ainda é muito comum”, conta Eliane.

Serviço

Confira os próximos temas (sempre das 11h às 13h30)

Local: SESC da Esquina – Rua Visconde do Rio Branco, 969, Curitiba – PR

NOVEMBRO

dias 11, 12 e 13 – Diabetes (dia 14/11 dia nacional da Diabetes) com os alunos do curso de Biomedicina

dias 17, 18, 19 – Tuberculose (dia 17/11 Combate a Tuberculose) com os alunos do curso de Biomedicina

dias 25, 26 e 27 – Câncer de mama, útero e próstata (dia 27/11 dia de combate a luta contra o Câncer) com os alunos do curso de Biomedicina

DEZEMBRO

Dia 01/12 – AIDS e DST (dia Mundial da Luta da AIDS)

Fonte: Imprensa UTP


Einstein 1 x 0 Teorias Especulativas


Um fóton (violeta) carrega um milhão de vezes mais energia do que o outro (amarelo). Ainda assim eles chegaram virtualmente juntos.[Imagem: NASA/Sonoma State University/Aurore Simonnet]

Estrutura do espaço e do tempo
O Telescópio Fermi, da NASA, que observa os céus em busca dos raios gama, a forma de mais alta energia da luz, está completando um ano de operação com um feito longamente esperado pela comunidade de físicos, astrofísicos e cosmologistas.

Depois de mapear mais de mil fontes individuais de raios gamas, o telescópio obteve uma medição que está fornecendo uma evidência experimental inédita sobre a estrutura do espaço e do tempo, unificados na teoria do espaçotempo de Einstein.

Teoria unificadora
"Os físicos gostariam de substituir a visão de Einstein sobre a gravidade - expressa em suas teorias da relatividade - com algo que desse conta de todas as forças fundamentais," explica Peter Michelson, cientista do Telescópio Fermi. "Há muitas ideias, mas poucas maneiras de testar cada uma delas."

Várias abordagens em busca de novas teorias sobre a gravidade vislumbram o espaçotempo como tendo uma estrutura "esponjosa" e mutável em escalas físicas trilhões de vezes menores do que um elétron.

Alguns desses modelos preveem que a estrutura esponjosa do espaçotempo faria com que os raios gama de alta energia movessem-se mais lentamente do que os fótons de mais baixa energia.

Isto contraria diretamente as previsões de Einstein, de que toda a radiação eletromagnética - ondas de rádio, infravermelha, luz visível, raios X e raios gama - viaja através do vácuo sempre à mesma velocidade.

Einstein continua valendo
Em 10 de Maio de 2009, o Telescópio Fermi - assim como outros observatórios espaciais - captou uma explosão de raios gama com uma duração de 2,1 segundos, ocorrida em uma galáxia a 7,3 bilhões de anos-luz de distância.

Dentre os muitos fótons que o telescópio captou, dois possuíam energias com intensidades que diferiam mais de um milhão de vezes. Ainda assim, depois de viajarem 7,3 bilhões de anos-luz, eles chegaram com uma diferença de apenas 9 décimos de segundo.

"Esta medição elimina qualquer abordagem para uma nova teoria da gravidade que se baseie em alterações na velocidade da luz fortemente dependentes de alterações na energia," explica Michelson. "Para uma parte em 100 milhões de bilhão, esses dois fótons viajaram à mesma velocidade. Einstein continua valendo."

Bibliografia:
A limit on the variation of the speed of light arising from quantum gravity effects
Abdo et al.
Nature
28 October 2009
Vol.: Advance online publication
DOI: 10.1038/nature0857
Redação do Site Inovação Tecnológica - 29/10/2009

quinta-feira, 5 de novembro de 2009

Força mecânica induz diferenciação de célula-tronco embrionária


Os cientistas olaram uma gota magnética, com cerca de 4 micrômetros de diâmetro, na superfície de uma célula-tronco embrionária viva, usando um campo magnético externo para agitar as duas. [Imagem: Chowdhury et al.]

Um pequeno "empurrãozinho" pode ser tudo o que uma célula-tronco embrionária precisa para diferenciar-se em um tipo específicos de célula.


A descoberta, feita por cientistas da Universidade de Illinois, nos Estados Unidos, terá aplicações na clonagem terapêutica e na medicina regenerativa.

"Nossos resultados sugerem que pequenas forças mecânicas podem de fato desempenhar um papel crítico na direção específica da diferenciação," afirma Ning Wang, um dos autores da pesquisa que será publicado no próximo exemplar da revista Nature.

Expressão genética à força
A "maciez" física é uma propriedade intrínseca das células-tronco embrionárias que determina como elas respondem às forças em seu microambiente físico. Os cientistas já sabiam que as forças mecânicas externas determinam como as células-tronco se ligam a uma superfície e como elas se espalham sobre a superfície.

O que eles não sabiam é que a força mecânica externa também influencia como genes específicos são expressados, determinando a rota que a célula-tronco seguirá, diferenciando-se em um tipo específico de célula.

Sensibilidade celular
Para estudar a sensibilidade celular à força mecânica, Wang e seus colegas primeiro colaram uma gota magnética, com cerca de 4 micrômetros de diâmetro, na superfície de uma célula-tronco embrionária viva.

Um campo magnético oscilante, aplicado externamente, portanto sem nenhum contato direto com a célula ou com a gota magnética, fez com que a dupla oscilasse numa e noutra direção.

A natureza cíclica da força mecânica é muito importante no experimento. Segundo Wang, a oscilação simula as forças naturais que atuam no interior de uma célula viva, como o movimento cíclico da miosina, uma espécie de motor de proteína.

Os pesquisadores descobriram que as células-tronco embrionárias são mais flexíveis e muito mais sensíveis às forças cíclicas que as células mais maduras, já diferenciadas.

Os pesquisadores obtiveram os mesmos resultados quando aplicaram as forças cíclicas a células musculares humanas. As células-tronco embrionárias utilizadas no experimento foram colhidas de embriões de ratos. Eles não fizeram experiências com células-tronco embrionárias humanas.

Expressão genética seletiva
Para estudar os efeitos de longo prazo da aplicação das forças mecânicas, os pesquisadores utilizaram corantes fluorescentes verdes, que permitiram acompanhar a expressão de genes específicos que, em última instância, determinam o caminho de desenvolvimento da célula-tronco, ou seja, em que tipo de célula ela se diferenciará.

"Se nossas descobertas puderem ser estendidas para embriões animais em seus primeiros estágios, poderemos ter uma nova forma de diferenciar localmente uma única célula de uma determinada linhagem, deixando todas as demais intactas," explica Wang.

Bibliografia:
Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells
Farhan Chowdhury, Sungsoo Na, Dong Li, Yeh-Chuin Poh, Tetsuya S. Tanaka, Fei Wang, Ning Wang
Nature Materials
October 2009
Vol.: Published online
DOI: 10.1038/nmat2563
Fonte: Inovação Tencológica

terça-feira, 3 de novembro de 2009

Cirurgias robotizadas serão pagas pelo SUS a partir de 2010


O objetivo é que mais pessoas possam ter acesso aos seus benefícios. O maior obstáculo é o alto custo. O robô Vince S custa cerca de US$ 2 milhões. [Imagem: Intuitive Surgical]

O SUS (Sistema Único de Saúde) começará a oferecer cirurgias feitas com o uso de robôs a partir do primeiro semestre de 2010.

O primeiro centro a realizar cirurgias robotizadas pelo SUS deverá ser o Hospital de Câncer de São Paulo, ligado à Universidade de São Paulo (USP).

Avanços no tratamento do câncer
Segundo o oncologista Ricardo Abdalla, especialista em robótica e médico do Hospital Albert Einstein (SP), esse foi um dos assuntos tratados nos três dias do 18º Congresso Brasileiro de Cancerologia (Concan), realizado em Curitiba e que contou com os maiores especialistas do mundo na área.

Foram apresentadas 750 pesquisas científicas durante o evento. Várias dessas pesquisas relacionam o avanço do tratamento do câncer ao surgimento de quimioterápicos de última geração, de equipamentos capazes de fazer o diagnóstico e o tratamento ao mesmo tempo, assim como a disponibilização da radioterapia que trata o tumor e preserva os tecidos sadios.

Controvérsias
Os participantes defenderam a incorporação dessas novas tecnologias aos centros médicos, incluindo os avanços nas áreas de quimioterapia, radioterapia e cirurgia.

Contudo, o uso disseminado das tecnologias de ponta no combate ao câncer está longe de ser uma unanimidade entre os especialistas. E menos ainda entre os gestores da saúde. Os chamados medicamentos de última geração, assim como alguns procedimentos de ponta, geralmente acrescentam poucos meses à vida dos pacientes, mas custam o equivalente ao tratamento inteiro de centenas de outros.

Unanimidades
A robótica, ao contrário, tem aumentado a produtividade das equipes cirúrgicas e melhorado o resultado para os pacientes. E até agora só estão disponíveis para pacientes que podem pagar por elas.

Os robôs já são usados em diversos procedimentos oncológicos, como cirurgias de laringe, cardiotorácicas com envolvimento do esôfago, cirurgias abdominais em relação ao aparelho digestivo, cirurgias urológicas para rins, suprarrenais e próstata e cirurgias em oncologia ginecológica.

Robôs-cirurgiões no Brasil
Abdalla lembrou que atualmente existem quatro equipamentos de robótica no Brasil, em três centros de excelência em oncologia. "O objetivo é que mais pessoas possam ter acesso aos seus benefícios. O maior obstáculo é o alto custo. O robô Vince S custa cerca de US$ 2 milhões", ressaltou.

Mas, de acordo com o especialista, a aquisição do sistema é um benefício enorme, já que proporciona cirurgias muito mais precisas e menos invasivas, o que é traduzido em uma recuperação mais rápida e em menor período de internação.

Sobrevida
O tratamento de câncer de intestino, por exemplo, foi um dos que apresentou maior avanço nos últimos cinco anos. Uma pessoa diagnosticada com câncer de intestino há quatro anos tinha expectativa de viver apenas seis meses, enquanto hoje a sobrevida passa de dois anos.

O mesmo ocorre com alguns tumores de câncer de mama. Atualmente, mais de 50% dos adultos diagnosticados com câncer conseguem ser curados.

Segundo o presidente do congresso, Luiz Antonio Negrão Dias, mesmo com todo o avanço, o mais importante ainda é a prevenção. "Isso é simples. Se todas as pessoas corrigissem hábitos de vida, parando de fumar, praticando exercícios e evitasse comidas gordurosas, teríamos uma redução de 70% em novos casos de câncer".

Fonte: Inovação Tecnológica

segunda-feira, 2 de novembro de 2009

Brasil quer autossuficiência na produção de urânio até 2014


A mina de Caetité, no interior da Bahia, quebrou o recorde de extração de urânio em setembro. Foram 51 toneladas produzidas, cinco a mais que a antiga marca atingida em maio último.[Imagem: MCT]

Produção brasileira de urânio

A mina de Caetité, no interior da Bahia, quebrou o recorde de extração de urânio em setembro. Foram 51 toneladas produzidas, cinco a mais que a antiga marca atingida em maio último. A expectativa é de que até dezembro a produção anual também seja superada. Faltam cerca de 46 toneladas para chegar à marca de 400 toneladas extraídas em 2008.

Segundo o presidente do Conselho Nacional de Energia Nuclear (Cnen/MCT), Odair Gonçalves, o Programa Nuclear Brasileiro (PNB) avança em um ótimo ritmo. "Estamos investindo muito na exploração do urânio e também em tecnologias para que o Brasil se torne autossuficiente em produção e enriquecimento até 2014".

Ciclo do urânio dominado pelo Brasil

Hoje, duas etapas do ciclo do combustível nuclear ainda não são feitas em território nacional. O minério extraído é enviado ao Canadá, onde é convertido para o estado gasoso, depois segue para a Europa para ser enriquecido e retornar ao Brasil.

Apesar de ser desenvolvido por mão-de-obra estrangeira, o Brasil detém a tecnologia para o ciclo do combustível nuclear, mas faltam equipamentos para atender a demanda industrial. "É um processo que sabemos e podemos executar, mas ainda não é rentável ao País", explica Gonçalves.

A Fábrica de Combustível Nuclear (FCN), em Resende (RJ), conta com dois conjuntos de centrífugas, conhecidos como cascatas, para enriquecer o urânio. A terceira cascata deve entrar em funcionamento em final de janeiro de 2010. Todas as cascatas de enriquecimento foram construídas pela Marinha do Brasil.


Depois de passar por um processo de purificação, o urânio é separado do minério e concentrado sob a forma de um sal amarelo, conhecido como yellowcake. [Imagem: MCT]

Processo de enriquecimento do urânio.

Os minérios que contêm o urânio são extraídos em Caetité, sudoeste da Bahia. Depois de passar por um processo de purificação, o urânio é separado do minério e concentrado sob a forma de um sal amarelo, conhecido como yellowcake.

Depois desta primeira fase, duas etapas são realizadas fora do Brasil. A primeira é no Canadá, o yellowcake é dissolvido e mais uma vez purificado, obtendo-se o urânio nuclear puro, que será convertido para o estado gasoso (hexafluoreto de urânio). A segunda fase é feita em países da Europa, quando o urânio em gás é enriquecido e enviado em contêineres à FCN.

Já em solo nacional, o urânio enriquecido é reconvertido para a forma sólida e depois transformado em pequenas pastilhas. Com pouco menos de um centímetro de comprimento e de diâmetro, as pastilhas são colocadas em um conjunto de 235 tubos metálicos (varetas), formando o elemento combustível.

Combustível nuclear

Para se ter uma ideia da capacidade desse combustível, duas pastilhas geram energia para manter funcionando por um mês uma residência média onde moram quatro pessoas. O conjunto de varetas gera energia para 42 mil residências do mesmo porte.

As varetas são enviadas às usinas Angra 1 e 2, em Angra dos Reis (RJ), que funcionam como centrais termoelétricas. O elemento combustível é aquecido, o calor liberado pelas pastilhas ferve a água de uma caldeira transformando-a em vapor que movimenta uma turbina. O movimento das hélices dá partida a um gerador que produz a eletricidade.

Reservas de urânio do Brasil


Com pouco menos de um centímetro de comprimento e de diâmetro, as pastilhas são colocadas em um conjunto de 235 tubos metálicos (varetas), formando o elemento combustível. [Imagem: MCT]

A extração anual de urânio no Brasil ainda não alcança escala industrial. O volume produzido na mina de Caetité é suficiente para atender a demanda de Angra 1 e 2. O Programa Nuclear Brasileiro propõe que até 2030 de quatro a oito usinas nucleares, além de Angra 1, 2, e 3, sejam construídas.

Segundo o gerente da Indústrias Nucleares do Brasil (INB) no nordeste, Hilton Mantovanni, a mina de Caetité, a única que extrai urânio na América Latina, tem capacidade para ser explorada por pelo menos 30 anos. Para atender a demanda das novas usinas do PNB, Caetité poderá extrair 1,2 mil toneladas de urânio a partir de 2017. "A mina tem um potencial muito grande. A cada dia encontramos novas anomalias que podem ser exploradas", diz.

Mesmo com a garantia de mais três décadas de produção, outra mina está em preparação em Santa Quitéria, no Ceará. Como se trata de uma jazida com predominância de fosfato, mineral que não faz parte do monopólio da União, a INB fez uma parceria com a empresa Galvani. Ela será responsável por explorar o local. A empresa fica com o fosfato e repassa o urânio a INB. A expectativa é a de que a extração comece em janeiro de 2012.

Nos primeiros anos, a produção anual da nova jazida vai girar em torno de 1,1 toneladas. Em 2017, esse número deve subir para 1,6 mil toneladas por ano. Com isso, a produção nacional de urânio pode aumentar 600% em oito anos.

Novas usinas nucleares brasileiras

As novas usinas nucleares ainda não têm local definido para serem construídas, exceto Angra 3, que ficará no Rio de Janeiro. O presidente do Cnen adianta que pelo menos uma usina será construída no Nordeste. "É preciso ter uma alternativa energética na região. Quando houve o apagão elétrico o Sudeste foi muito beneficiado. Angra 1 e 2 foram acionadas e ajudaram a suprir a demanda.", explica Gonçalves.

Juntas, Angra 1 e 2 geram cerca de dois mil megawatts de energia elétrica, quase metade do consumo do estado de Rio de Janeiro. "É muito melhor para o meio ambiente e mais barato usar a energia nuclear do que gás ou carvão. Em 2008, por exemplo, a segunda energia mais fornecida no Brasil foi a nuclear", lembrou.

O presidente da Indústrias Nucleares do Brasil (INB), Alfredo Trajan Filho, estima que Angra 3 entre em operação em 2015. "A partir de 2019 a primeira usina do Programa Nuclear Brasileiro deve ser ativada, em 2022 a segunda, três anos depois a terceira usina e em 2027 a quarta usina. Se houver necessidade este período pode diminuir", analisa Trajan. Segundo ele, o Brasil tem capacidade para atender toda a demanda de urânio do PNB, inclusive com sobra. O excedente pode ser exportado, mas a decisão política, a princípio, é não vender as reservas.

Armazenamento do lixo nuclear

Com o aumento da produção e enriquecimento de urânio pelo PNB, o volume de rejeito nuclear também deve aumentar. O Brasil projeta um grande depósito para armazenar esse lixo nuclear. "Estima-se que o repositório definitivo construído pela Cnen armazene 60 mil m³ de rejeitos até 2060, uma quantidade muito pequena para um prazo muito grande", diz o diretor do Centro Regional de Ciências Nucleares (CRCN/MCT), em Recife (PE), Ricardo Lima.


Varetas com o combustível nuclear, prontas para serem mergulhadas no reator. [Imagem: MCT]

O depósito definitivo está na fase de definição de conceitos e deve começar a receber os materiais nucleares até 2016. O local onde será construído ainda não foi definido. Segundo Lima, a escolha será técnica. "Muitos municípios já se ofereceram para receber o depósito, isso porque serão pago royalties à cidade que receber a instalação. Mas, a escolha será técnica. Temos que avaliar as condições de cada município", explica.

Enquanto o depósito não entra em operação, o lixo nuclear produzido por Angra 1 e 2 é estocado em depósitos da Central Nuclear de Angra dos Reis. "Todo rejeito nuclear produzido no Brasil tem "DNA, endereço e telefone". Sabemos onde estão estocados e quanto tempo deve permanecer lá. É tudo muito seguro", garante Lima.

Tipos de lixo nuclear

Existem três tipos de lixo nuclear. O lixo de baixa atividade é gerado na mineração e na fabricação do combustível - inclui papéis, panos, ferramentas, roupas, filtros e outros objetos que contêm pequenas quantidades de radioatividade.

O lixo de média atividade inclui resinas, revestimento de metal do reator e outros materiais que contêm irradiação que levam um período um pouco maior para se descontaminar. Esses dois tipos representam 95% do rejeito nuclear que depois de um determinado período pode ser reaproveitado.

O lixo nuclear de alta atividade produzido no Brasil é o elemento combustível usado. Ele contém cerca de 1/3 do urânio que sofreu a fissão nas usinas. O rejeito nuclear de alta atividade também pode ser reaproveitado, mas ainda não é rentável.

"Para reaproveitar este material é preciso ter demanda para isso. Hoje, produzimos este tipo de lixo nuclear em baixa escala por isso nem pensamos em reprocessar. Quando as outras usinas estiverem prontas vamos pensar nisso. Mas a decisão será do governo Federal", diz o presidente da INB, Trajan Filho.

Proteção ambiental

Em Caetité, diversos programas ambientais e sociais estão em andamento para diminuir os impactos da extração. Há uma série de ações como a manutenção de um horto florestal com viveiro de mudas nativas e medicinais e reflorestamento.

Uma área de 800 hectares está em fase de recomposição - a previsão é a de que sejam plantadas cinco milhões de mudas nativas da região. Além disso, os alunos de escolas da região participam de programas de educação ambiental, apoio a reciclagem e aproveitamento de materiais alternativos.

Fonte: MCT - 28/10/2009

Cientistas desvendam o genoma do porco doméstico


Porcos e pessoas têm várias características semelhantes, e os suínos são muitas vezes usados em pesquisas.

CHICAGO, EUA - Uma equipe internacional de cientistas decodificou o código genético do porco doméstico, uma pesquisa que poderá se mostrar útil na busca de tratamentos médicos tanto para porcos quanto humanos, e talvez ajudar na criação de uma vacina de gripe suína que funcione em porcos.

Cientistas desvendam estrutura 3D do genoma

Porcos e pessoas têm várias características semelhantes, e os suínos são muitas vezes usados em pesquisas sobre a saúde humana. Cientistas contam com os porcos para estudar obesidade, problemas cardíacos e doenças de pele.

"O porco é o animal ideal para pesquisar questões relacionadas a saúde e estilo de vida nos Estados Unidos", disse Larry Schook, da Universidade de Illinois em Champaign, que encabeçou o projeto de sequenciamento.

Os pesquisadores anunciaram seus resultados nesta segunda-feira, 2, em reunião do Instituto Sanger do Wellcome Trust, no Reino Unido.

Schook e colegas decodificaram o genoma de um porco Duroc ruivo, uma das cinco principais raças usadas na produção de carne suína no mundo. Pesquisadores já desvendaram o DNA de cerca de 20 animais, incluindo cães, chimpanzés, ratos, camundongos, vacas e seres humanos.

Fonte: Estadão

Cientistas descobrem nova fórmula para tratamento da leucemia


Nova droga destrói células cancerígenas em pacientes com resistência. Tratamento só deve estar disponível entre três e cinco anos.

Cientistas irlandeses e italianos descobriram uma nova fórmula para o tratamento da leucemia, a notícia está publicada na edição desta segunda-feira (2) da revista "Journal Cancer Research".
Chamada "PBOX-15", a nova droga consegue destruir as células cancerígenas em pacientes de leucemia que mostram sintomas fracos e resistência a outros tratamentos.

O estudo foi desenvolvido por cientistas do irlandês Trinity College Dublin (TCD) em cooperação com a Universidade de Siena, na Itália, e está ainda em fase experimental, por isso que o uso do novo tratamento pode demorar de três e cinco anos.
Segundo o professor do TCD, Mark Lawlor, sua equipe de pesquisadores trata agora de investigar os efeitos colaterais do "PBOX-15".

"Estamos muito emocionados. Queremos dar esperança aos doentes de câncer", afirmou Lawler, e explicou que o fármaco fornecido aos pacientes ataca e destrói a estrutura das células cancerígenas da leucemia.

Potencial
O tratamento foi particularmente bem-sucedido na Leucemia Linfática Crônica (LLC), o tipo de câncer de sangue e medula óssea mais comum no Ocidente.

Segundo a investigação, a "PBOX-15" demonstrou maior eficiência que outros medicamentos utilizados até agora, como a "fludarabina", um fármaco de quimioterapia anticancerígeno.

O diretor da Sociedade Irlandesa do Câncer, John McCormack, demonstrou confiança sobre a descoberta científica e deseja que o medicamento passe logo do laboratório para as camas de hospital em benefício dos pacientes.

"Esta novidade destaca o potencial que têm os descobrimentos científicos básicos para o benefício clínico".

Fonte: G1

sexta-feira, 30 de outubro de 2009

CAMPANHA NACIONAL DE VALORIZAÇÃO DA BIOMEDICINA


Os Conselhos Regionais e o Federal de Biomedicina estão enviando para todos os biomédicos do país um exemplar do livro “Biomedicina – um painel sobre o profissional e a profissão”, que marca o início da campanha nacional de valorização da especialidade.

Os secretários de saúde dos 5.561 municípios do Brasil também irão receber a publicação, assim como os secretários estaduais, instituições de ensino, institutos, etc.

A apresentação da Biomedicina é ampla nesta versão impressa, elaborada em linguagem fácil, de entendimento imediato, com o objetivo de mostrar a profissão para autoridades governamentais, secretários estaduais, municipais, parlamentares, diretores de empresas do setor, a sociedade em geral, e servir de orientação e apoio para o próprio profissional biomédico.

Seu conteúdo revela um histórico da especialidade, a trajetória dos cursos, o perfil do profissional, seu campo de atuação, a garantida legal das atividades, a classificação no Conselho Nacional de Saúde, inclusão na Classificação Brasileira de Ocupações (CBO), o Ato Profissional Biomédico, as entidades da Biomedicina e suas funções e diferenças, indicações de legislação da saúde, sites importantes, fontes úteis, além de informações sobre análises clínicas, etc, e endereços de CRBMs e CFBM.

Parte da população brasileira desconhece detalhes da Biomedicina. A sociedade em geral não sabe ainda o que é ser biomédico. Alguns nem têm idéia do que faz esse profissional. Isso é consequência de uma carreira relativamente nova no cenário da saúde brasileira.

A expectativa é de que este painel seja uma ferramenta importante para um melhor conhecimento da carreira, que completou 40 anos em 2006 – foi em 1966 que surgiu o seu primeiro curso de graduação.

Biomédico, participe também desta campanha de valorização da Biomedicina, divulgando a profissão e o profissional e apresentando este livro institucional.

http://www.crbm3.org.br/arquivos/livro.pdf

Como colocar a vida no papel



Células endoteliais crescidas em folhas sobrepostas de papel, formando estruturas semelhantes a vasos sanguíneos, que se espalham entre as fibras de celulose. [Imagem: Ratmir Derda]


Cientistas da Universidade de Harvard, nos Estados Unidos, descobriram uma técnica que poderá mudar a forma como os biólogos cultivam e estudam células vivas.

O potencial da nova técnica é a sua simplicidade - tão fácil quanto usar uma toalha ou um filtro de papel.

Cultivo de células em laboratório
O cultivo de células em laboratório normalmente é feito em pequenos recipientes de vidro, chamados placas de Petri. Mas as células no organismo real não crescem em superfícies planas - elas crescem em três dimensões, para formar os órgãos.

Existem algumas técnicas para fazer isto, envolvendo a criação de suportes para as células crescerem, normalmente um gel, todas, entretanto, ainda longe da perfeição.

Como as células de diferentes pontos de um órgão consomem quantidades diferentes de oxigênio e alimento, essas culturas de laboratório não conseguem reproduzir as condições de um órgão real. Estudar as células de diferentes partes do gel, então, é ainda mais difícil.

Cultivo de células em papel

O trabalho do pesquisador Ratmir Derda consistiu em encontrar um suporte muito mais simples e fácil de manipular.
As células são cultivadas em um papel comum, que pode ser um filtro de papel ou um papel toalha. Sobre cada folha, as células formam uma camada bidimensional, exatamente como na placa de Petri. Desta forma, elas usufruem do benefício do enfoque bidimensional, que permite que todas recebam as quantidades adequadas de oxigênio e alimento.

A seguir, os pesquisadores vão empilhando as folhas de papel, cada uma com sua própria camada de células cultivadas. A porosidade do papel permite que as células se comuniquem, criando uma estrutura tridimensional que reproduz a estrutura de um órgão de forma mais precisa do que quando se utiliza o gel.

Os pesquisadores cultivaram um tumor 3D no suporte de papel que apresenta comportamentos similares ao câncer no organismo. Para estudar as células internas, basta retirar as folhas de papel sobrepostas, sem destrui-las.

Ferramenta de laboratório
O resultado poderá simplificar a criação de modelos tridimensionais realísticos de tecidos normais ou cancerosos, potencialmente tornando mais rápido e fácil testar compostos químicos candidatos a novos medicamentos.

"Esta pesquisa tem o potencial para se tornar uma ferramenta-padrão nos laboratórios, juntamente com as placas de Petri, em todos os trabalhos com células vivas," diz George Whitesides, um dos orientadores do trabalho. "Filtros e outros tipos de papel estão disponíveis em todos os lugares, e a técnica é flexível, servindo a vários propósitos, e extremamente simples."

Bibliografia:
Paper-Supported Three-Dimensional Cell Culture for Tissue-Based Bioassays
Ratmir Derda, Anna Laromaine, Akiko Mammoto, Sindy K. Y. Tang, Tadanori Mammoto, Donald E. Ingber, George M. Whitesides
Proceedings of the National Academy of Sciences
October 21, 2009
Vol.: Published online before print
DOI: 10.1073/pnas.0910666106
Fonte:  Inovação Tecnológica

quarta-feira, 28 de outubro de 2009

Atlas de Histologia - Mariano Di Fiore


Moderno, teórico e prático, este livro associa às magníficas ilustrações do tradicional "Atlas de Histologia" de Di Fiore novas figuras e esquemas explicativos em cores, para oferecer aos professores e alunos da área das ciências biológicas não só um texto sucinto, mas completo e visual, e adaptado aos programas vigentes nas universidades. Esta obra engloba a terminologia em Histologia, apresenta os instrumentos e métodos utilizados nos estudos histológicos, descreve células, tecidos e órgãos, e amplia a compreensão das funções orgânicas como também das patologias. A histologia descritiva se relaciona à análise funcional, constituindo assim o exame das funções orgânicas o cerne de cada capítulo.

Tamanho: 38Mb

Formato: Imagens em GIF com índice em HTML

Links para Download (Rapidshare)
http://rs28.rapidshare.com/files/1031198/difiore.rar

testei o link e tá funfando...

segunda-feira, 26 de outubro de 2009

Vídeo sobre a Biomedicina

Muito bom esse vídeo, fala um pouco sobre o nosso curso, vale a pena assistir, só tem uns 6 minutos.


http://www.youtube.com/watch?v=Nu5Qc5H3SJM

.

domingo, 25 de outubro de 2009

Nanofio bioeletrônico conecta mundos biológico e eletrônico


Representação artística do transístor bionanoeletrônico, mostrado o nanofio de silício (cinza) recoberto pela membrana dupla de lipídios (azul).[Imagem: Scott Dougherty, LLNL]

Pesquisadores do Laboratório Nacional Lawrence Livermore, nos Estados Unidos, mesclaram nanofios metálicos com moléculas de lipídios, criando um novo tipo de dispositivo para estabelecer uma conexão entre equipamentos eletrônicos e organismos biológicos.

O feito mereceu a capa da última edição da revista Proceedings the National Academy of Sciences.

Aplicações exóticas
Embora a primeira utilidade que venha à mente para tais eletrodos sejam os implantes neurais, permitindo que as pessoas controlem equipamentos com instruções emitidas diretamente pelo cérebro, eles abrem novos caminhos para aplicações bem mais amplas e até exóticas, incluindo novos tipos de transdutores e formas avançadas de troca de informações no interior dos computadores.

Enquanto os equipamentos eletrônicos usam campos e correntes elétricas para processar e transmitir informações, os sistemas biológicos usam um arsenal de membranas, receptores, canais e bombas para controlar a conversão de um tipo de sinal em outro - com uma eficiência que não pode ser comparado nem aos mais modernos equipamentos construídos pelo homem.

"Circuitos eletrônicos que usarem esses complexos componentes biológicos poderão se tornar muito mais eficientes," afirma Aleksandr Noy, coordenador do projeto.

Transístor de nanofios
A base do novo mecanismo é um transístor, o elemento básico de toda a eletrônica. A grande inovação é que a mesclagem entre biológico e eletrônico vai muito além de um simples revestimento biológico sobre os fios.
O transístor é feito com nanofios, cujas espessuras são comparáveis às das moléculas biológicas. Esses nanofios são tão pequenos que os cientistas estão testando seu uso para conectar até mesmo moléculas individuais.

Integração eletrônico-biológico
Graças às mais modernas técnicas de nanofabricação, os cientistas conseguiram integrar os átomos superficiais dos nanofios do transístor com as moléculas biológicas de uma membrana de lipídios, uma estrutura encontrada em todas as células.

As membranas de lipídios são estáveis e são capazes de se autoconsertar quando sofrem algum dano. Além disso, elas formam uma barreira virtualmente impenetrável para íons e outras pequenas moléculas, mas são abertas às trocas protônicas.

Incorporando uma membrana de duas camadas sobre os nanofios do transístor, os cientistas formaram um revestimento superficial que forma uma barreira com o meio em que ele for inserido.

Controle eletrônico da membrana biológica
Os cientistas podem selecionar a membrana mais adequada à aplicação que tiverem em mente. A principal característica da membrana lipídica é a dimensão dos seus poros, que estabelece o que pode e o que não pode chegar até o transístor, permitindo a leitura precisa dos sinais que o dispositivo deve captar.

Desta forma, é possível usar o transístor para ler informações sobre o transporte de moléculas de forma semelhante ao que os organismos vivos fazem, com a diferença de que, em vez do sinal ser lido por outro componente biológico, ele será lido eletronicamente pelo transístor.

A equipe também testou o controle no sentido inverso: alterando a tensão aplicada à porta do transístor, eles podem abrir e fechar os poros da membrana eletronicamente.

"Isto para não mencionar que essas membranas lipídicas podem abrigar um número praticamente ilimitado de máquinas protéicas que desempenham um grande número de funções críticas nas células, como reconhecimento, transporte e conversão de um tipo de energia em outro," acrescentou Nipun Misra, o principal autor do trabalho.

Bibliografia:
Bioelectronic silicon nanowire devices using functional membrane proteins
Nipun Misra, Julio A. Martinez, Shih-Chieh J. Huang, Yinmin Wang, Pieter Stroeve, Costas P. Grigoropoulos, Aleksandr Noy
Proceedings of the National Academy of Sciences
August 10, 2009
Vol.: 106 no. 33 13780-13784
DOI: 10.1073/pnas.0904850106
Fonte: Inovação Tecnológica

sábado, 24 de outubro de 2009

Atlas de Patologia Forense - Jay Dix



Bom esse atlas

PDF, 30MB


http://www.4shared.com/file/48748308/c7f34a14/coloratlasofforensicpathologyebook-een.html

Brasil vai construir reator nuclear para aplicações medicinais

Autoridades observam o novo sistema de transferência de materiais radioativos, inaugurado no Ipen.[Imagem: MCT]


O Ministério da Ciência e Tecnologia (MCT) e o governo de São Paulo construirão, em parceria, um reator nuclear destinado à pesquisa e à produção de radioisótopos, elementos utilizados em várias áreas de saúde, como a medicina nuclear.
O anúncio da construção do reator nacional, chamado Reator Multipropósito Brasileiro (RMB), foi feito pelo ministro da Ciência e Tecnologia, Sergio Rezende e pelo secretário de Desenvolvimento de São Paulo, Geraldo Alckmin, durante a cerimônia comemorativa de 53 anos de fundação do Instituto de Pesquisas sobre Energia Nuclear (Ipen/MCT) e de 50 anos da radiofarmácia.

Energia nuclear medicinal
Quando estiver em operação o reator garantirá autonomia na produção de molibdênio, substância que serve de matéria-prima para a fabricação dos geradores de tecnécio, utilizados em mais de 80% dos procedimentos de medicina nuclear.
Atualmente, apenas quatro reatores no mundo produzem, em escala comercial, o molibdênio. A parada de dois deles, por motivos técnicos, afetou a medicina nuclear mundialmente.
Depois de iniciada a construção do reator, que vai exigir investimentos da ordem de US$ 500 milhões, serão necessários seis anos para a conclusão do empreendimento. O Ipen e a Comissão Nacional de Energia Nuclear (Cnen/MCT) já têm prontos os estudos técnicos sobre o projeto. O governo paulista está analisando a destinação da área para a implantação do reator.

Produção nacional de medicamentos radioativos
O secretário Geraldo Alckmin falou da importância do projeto para o País e para a medicina nuclear, especialmente, para a produção de radioisótopos. "A medicina nuclear receberá um impulso ainda maior nos próximos anos, tornando-se uma aliada ainda mais importante para o aumento da expectativa de vida da população", disse.
Já o superintendente do Ipen, Nilson Dias Vieira Júnior, elogiou a parceria do governo estadual com o MCT para o projeto do RMB. Em seu discurso, ele lembrou que uma das primeiras aplicações nucleares foi à produção de iodo-131 como radiofármaco, o que permitiu estabelecer a medicina nuclear brasileira, e com ela uma parceria com a classe médica e com a sociedade.

Transporte subterrâneo de materiais radioativos
Os discursos foram feitos durante a inauguração das instalações de transferência e transporte de radioisótopos dos aceleradores de partículas cíclotron e do reator nuclear de pesquisas IEA-R1 para a área de radiofarmácia do Ipen.
Antes da construção do novo sistema pneumático de envio, via tubulações subterrâneas, os materiais eram transportados em blindagens do reator nuclear de pesquisas IEA-R1 e dos aceleradores de partículas cíclotron até o prédio da radiofarmácia, onde os produtos são processados e enviados para os mais de 300 centros médicos que utilizam os radiofármacos no País.
O diretor do Ipen, Jair Mengatti, explica que além de se eliminar as blindagens, que chegavam a pesar até 700 kg, o sistema é mais rápido, mais seguro e os produtos seguem diretamente para as células onde serão processados.

O que é o Ipen?
O Ipen é uma autarquia do Governo do Estado de São Paulo, vinculada à Secretaria de Desenvolvimento. É gerenciado técnica, administrativa e financeiramente pela Comissão Nacional de Energia Nuclear (CNEN/MCT) e associado para fins de ensino de pós-graduação à Universidade de São Paulo.

Fonte: Inovação Tecnológica

Decifrada estrutura 3-D do genoma humano

Que a molécula de DNA tem a forma de uma rosca-sem-fim, comumente chamada de espiral dupla, todo o mundo sabe. O que é bem menos difundido é o fato de que, se o genoma de cada célula for esticado, ele terá dois metros de comprimento.
Sabendo disso, uma pergunta imediatamente se coloca: como é que as moléculas de DNA se enrolam para caber dentro da célula, sem se embaraçar e sem dar nós?

Imagem 3-D do DNA
Esta pergunta agora foi respondida por pesquisadores das universidades de Harvard e MIT, nos Estados Unidos, que decifraram a estrutura tridimensional do genoma humano, gerando a primeira imagem 3-D do DNA em seu estado natural, no interior de uma célula.
"Nós sabemos há muito tempo que o DNA, em pequena escala, tem o formato de espiral dupla," diz o pesquisador Erez Lieberman-Aiden, um dos autores da descoberta. "Mas se a espiral dupla não se dobrar, o genoma de cada célula teria dois metros de comprimento. Os cientistas de fato não entendiam como a espiral dupla se dobra para caber no núcleo de uma célula humana, que tem cerca de um centésimo de milímetro de diâmetro."

Compartimento de acesso rápido
Ao mapear tridimensionalmente o DNA, os pesquisadores fizeram duas descobertas surpreendentes. Primeiro, o genoma humano é organizado em dois compartimentos separados, mantendo os genes ativos facilmente acessíveis, enquanto o DNA não utilizado fica muito mais compactado em um outro compartimento.
Os cromossomos deslizam para dentro e para fora dos dois compartimentos repetidamente, conforme seus DNAs tornam-se ativos ou inativos. "De forma muito inteligente, as células separam os genes mais ativos, tornando mais fácil para as proteínas e outros reguladores alcançá-los," diz Job Dekker, outro membro da equipe.

Densidade de informações no DNA
A segunda descoberta é que o genoma adota uma organização muito incomum, conhecida como fractal. A arquitetura específica que os cientistas encontraram, chamada "glóbulo fractal", permite que a célula empacote o DNA em um formato incrivelmente denso - a densidade de informações alcançada é trilhões de vezes mais alta do que a encontrada em uma memória de computador.
E isso sem permitir que o genoma se embarace ou dê nós, o que inviabilizaria o acesso da célula ao seu próprio genoma. Além disso, o DNA pode facilmente ser desdobrado e novamente dobrado durante os processos de ativação genética, repressão genética e replicação celular.

Bibliografia:Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human GenomeErez Lieberman-Aiden, Nynke L. van Berkum, Louise Williams, Maxim Imakaev, Tobias Ragoczy, Agnes Telling, Ido Amit, Bryan R. Lajoie, Peter J. Sabo, Michael O. Dorschner, Richard Sandstrom, Bradley Bernstein, M. A. Bender, Mark Groudine, Andreas Gnirke, John Stamatoyannopoulos, Leonid A. Mirny, Eric S. Lander, Job DekkerScience9 October 2009Vol.: 326. no. 5950, pp. 289 - 293DOI: 10.1126/science.1181369

Fonte: Inovação Tecnológica

sexta-feira, 23 de outubro de 2009

Biomedicina - Origem: Wikipédia, a enciclopédia livre.

Biomedicina é a ciência e que conduz estudos e pesquisas no campo de interface entre biologia e medicina, voltada para a pesquisa das doenças humanas, seus fatores ambientais e ecoepidemiológicos, com intuito de encontrar sua causa, prevenção, diagnóstico e tratamento.

CAMPO DE ATUAÇÃO

A Biomedicina, como outras profissões da área de saúde, divide-se em várias especialidades ou habilitações:

1. Análises Clínicas
2. Acupuntura
3. Análise Ambiental
4. Análises Bromatológicas
5. Anatomia Patológica
6. Banco de Sangue
7. Biofísica
8. Biologia Molecular
9. Bioquímica
10. Citologia Oncótica
11. Coleta de Material
12. Docência e Pesquisa
13. Embriologia
14. Farmacologia
15. Fisiologia (Geral e Humana)
16. Genética
17. Hematologia
18. Histologia Humana
19. Imagenologia
20. Imunologia
21. Indústria e Comércio
22. Informática de Saúde
23. Microbiologia de Alimentos
24. Microbiologia e Virologia
25. Parasitologia
26. Patologia
27. Perfusão Extracorpórea
28. Psicobiologia
29. Radiologia
30. Reprodução Humana
31. Sanitarista
32. Saúde Pública
33. Toxicologia

As áreas de atuação do profissional Biomédico estão devidamente regulamentadas nas Resoluções nº 78 e 83, de 29/4/2002, do Conselho Federal de Biomedicina, que dispõem sobre o Ato Profissional Biomédico.

Livro do Biomédico



Se alguém quiser baixar o livro do Biomédico,
use o link abaixo


http://www.crbm1.gov.br/livrocrbm_040509.pdf


eu recomendo!!!

quinta-feira, 22 de outubro de 2009

ÁREA DE ATUAÇÃO:

A área de atuação do Biomédico é ampla.A profissão oferece uma grande série de opções e oportunidades.Uma atividade de destaque é no ensino, onde o profissional forma e prepara acadêmicos para o exercício da carreira.Outro setor de grande atuação do Biomédico é na pesquisa, cujo objetivo é desenvolver e implantar novas tecnologias nas universidades e laboratórios. Pesquisadores brasileiros da área de Biomedicina têm se destacado em estudos de repercussão mundial, como oProjeto Genoma Humano. Também é papel do pesquisador Biomédico testar aeficácia de substâncias já existentes no mercado.O profissional da Biomedicina ainda pode atuar nos campos da análise ambiental,microbiologia, citologia oncótica, parasitologia, imunologia, hematologia, bioquímica, biofísica, banco de sangue, virologia, fisiologia (geral e humana), saúde pública, radiologia, imagenologia, análises bromatológicas, microbiologia de alimentos, histologia, patologia, acupuntura, genética, embriologia, reprodução humana assistida, farmacologia, psicobiologia, biologia molecular,informática de saúde, anatomia patológica, sanitarista, toxicologia e perfusão extracorpórea.

Também há espaço para o Biomédico trabalhar nas indústrias (na produção de soros, vacinas, reagentes etc) e no comércio (assumindo a responsabilidade técnica de empresas que comercializam insumos e equipamentos para laboratórios de pesquisa, de ensino e de análises
clínicas).
Mas é a área das análises clínicas a mais procurada da Biomedicina. No Brasil, 80% dos profissionais Biomédicos trabalham no setor.
Existem em todo o País cerca de 2 mil laboratórios de análises clínicas, cuja responsabilidade técnica é exercida por Biomédicos. Há no Brasil, hoje, mais de 20 mil profissionais Biomédicos em atividades.
Fonte: Livro do Biomédico

O Biomédico ajuda você a viver melhor, a viver com saúde!

A cada dia, a Biomedicina vence uma barreira, desbrava fronteiras do corpo humano e da ciência.
A Biomedicina está inserida no dia-a-dia e na história das universidades, laboratórios, hospitais, bancos de sangue, clínicas, empresas, institutos de pesquisa e indústrias.