domingo, 25 de outubro de 2009

Nanofio bioeletrônico conecta mundos biológico e eletrônico


Representação artística do transístor bionanoeletrônico, mostrado o nanofio de silício (cinza) recoberto pela membrana dupla de lipídios (azul).[Imagem: Scott Dougherty, LLNL]

Pesquisadores do Laboratório Nacional Lawrence Livermore, nos Estados Unidos, mesclaram nanofios metálicos com moléculas de lipídios, criando um novo tipo de dispositivo para estabelecer uma conexão entre equipamentos eletrônicos e organismos biológicos.

O feito mereceu a capa da última edição da revista Proceedings the National Academy of Sciences.

Aplicações exóticas
Embora a primeira utilidade que venha à mente para tais eletrodos sejam os implantes neurais, permitindo que as pessoas controlem equipamentos com instruções emitidas diretamente pelo cérebro, eles abrem novos caminhos para aplicações bem mais amplas e até exóticas, incluindo novos tipos de transdutores e formas avançadas de troca de informações no interior dos computadores.

Enquanto os equipamentos eletrônicos usam campos e correntes elétricas para processar e transmitir informações, os sistemas biológicos usam um arsenal de membranas, receptores, canais e bombas para controlar a conversão de um tipo de sinal em outro - com uma eficiência que não pode ser comparado nem aos mais modernos equipamentos construídos pelo homem.

"Circuitos eletrônicos que usarem esses complexos componentes biológicos poderão se tornar muito mais eficientes," afirma Aleksandr Noy, coordenador do projeto.

Transístor de nanofios
A base do novo mecanismo é um transístor, o elemento básico de toda a eletrônica. A grande inovação é que a mesclagem entre biológico e eletrônico vai muito além de um simples revestimento biológico sobre os fios.
O transístor é feito com nanofios, cujas espessuras são comparáveis às das moléculas biológicas. Esses nanofios são tão pequenos que os cientistas estão testando seu uso para conectar até mesmo moléculas individuais.

Integração eletrônico-biológico
Graças às mais modernas técnicas de nanofabricação, os cientistas conseguiram integrar os átomos superficiais dos nanofios do transístor com as moléculas biológicas de uma membrana de lipídios, uma estrutura encontrada em todas as células.

As membranas de lipídios são estáveis e são capazes de se autoconsertar quando sofrem algum dano. Além disso, elas formam uma barreira virtualmente impenetrável para íons e outras pequenas moléculas, mas são abertas às trocas protônicas.

Incorporando uma membrana de duas camadas sobre os nanofios do transístor, os cientistas formaram um revestimento superficial que forma uma barreira com o meio em que ele for inserido.

Controle eletrônico da membrana biológica
Os cientistas podem selecionar a membrana mais adequada à aplicação que tiverem em mente. A principal característica da membrana lipídica é a dimensão dos seus poros, que estabelece o que pode e o que não pode chegar até o transístor, permitindo a leitura precisa dos sinais que o dispositivo deve captar.

Desta forma, é possível usar o transístor para ler informações sobre o transporte de moléculas de forma semelhante ao que os organismos vivos fazem, com a diferença de que, em vez do sinal ser lido por outro componente biológico, ele será lido eletronicamente pelo transístor.

A equipe também testou o controle no sentido inverso: alterando a tensão aplicada à porta do transístor, eles podem abrir e fechar os poros da membrana eletronicamente.

"Isto para não mencionar que essas membranas lipídicas podem abrigar um número praticamente ilimitado de máquinas protéicas que desempenham um grande número de funções críticas nas células, como reconhecimento, transporte e conversão de um tipo de energia em outro," acrescentou Nipun Misra, o principal autor do trabalho.

Bibliografia:
Bioelectronic silicon nanowire devices using functional membrane proteins
Nipun Misra, Julio A. Martinez, Shih-Chieh J. Huang, Yinmin Wang, Pieter Stroeve, Costas P. Grigoropoulos, Aleksandr Noy
Proceedings of the National Academy of Sciences
August 10, 2009
Vol.: 106 no. 33 13780-13784
DOI: 10.1073/pnas.0904850106
Fonte: Inovação Tecnológica

Nenhum comentário:

Postar um comentário